PENGERTIAN DAN CONTOH CRITICAL SECTION
Critical Section adalah bagian dari suatu proses yang akan
melakukan akses dan manipulasi data.Ketika sebuah proses
sedang dijalankan dalam critical section nya, tidak ada proses lain yang
boleh dijalankan dalam critical section tersebut, karena akan
menyebabkan keadaan mutually exclusive.
Mutually exclusive yakni keadaan terjadinya akses
resources yang sama di saat yang bersamaan. Mutually exclusive memerlukan kondisi
tertentu agar dapat terpenuhi.
Critical section biasanya digunakan saat program multithreading,
dimana program tersebut terdiri dari banyak thread, akan mengubah nilai dari
variabel. Dalam hal ini critical section diperlukan untuk melindungi
variabel dari concurrent access (pengaksesan program di saat yang bersamaan)
yang dapat membuat nilai dari variabel tersebut menjadi tidak konsisten.
Seperti yang telah kita ketahui bahwa proses dapat bekerja
sendiri (independent process) dan juga dapat bekerja bersama
proses-proses yang lain (cooperating process). Pada umumnya ketika
proses saling bekerjasama (cooperating process) maka proses-proses
tersebut akan saling berbagi data. Pada saat proses-proses berbagi data, ada
kemungkinan bahwa data yang dibagi secara bersama itu akan menjadi tidak
konsisten dikarenakan
adanya kemungkinan proses-proses tersebut melakukan akses
secara bersamaan yang menyebabkan data tersebut berubah, hal ini dikenal dengan
istilah Race Condition.
Oleh karena itu, dibutuhkan solusi yang tepat untuk
menghindari munculnya Race Condition. Solusi tersebut harus memenuhi
ketiga syarat berikut:
- Mutual Exclusion
- Progress
- Bounded Waiting
Ada dua jenis solusi untuk memecahkan masalah critical
section, yaitu.
- Solusi Perangkat Lunak. Solusi ini menggunakan algoritma-algoritma untuk mengatasi masalah critical section.
- Solusi Perangkat Keras. Solusi ini tergantung pada beberapa instruksi mesin tertentu, misalnya dengan me-non-aktifkan interupsi, mengunci suatu variabel tertentu atau menggunakan instruksi level mesin seperti tes dan set.
Berikut ini algoritma-algoritma yang digunakan untuk
mengatasi masalah critical section:
1.
Algoritma
I
Algoritma I memberikan giliran kepada setiap proses untuk
memproses critical section-nya secara bergantian.
Asumsi yang digunakan disini setiap proses secara bergantian
memasuki critical section-nya.
Statement while(turn != 4) akan memeriksa apakah pada saat
itu proses 4 mendapatkan turn, jika tidak maka proses 4 akan busy waiting(lihat
kembali bahwa printah while diakhiri dengan “;”). Jika ternyata pada saat itu
merupakan giliran proses 4 maka proses 4 akan mengerjakan critical section-nya.
Sampai sini jelas terlihat bahwa mutex terpenuhi! Proses yang tidak mendapatkan
turn tidak akan dapat mengerjakan critical section-nya dan turn hanya akan
diberikan pada satu proses saja.
Setelah proses 4 selesai mengerjakan critical section maka
turn diberikan pada proses lainnya (turn= j, j merupakan proses selanjutnya
yang dapat mengerjakan critical section). Setelah turn-nya diberikan kepada
proses lain, proses 4 akan mengerjakan remainder section. Disini
jelas terlihat bahwa syarat bounded waiting jelas terpenuhi. Ingat asumsi yang
digunakan dalam algoritma ini adalah setiap proses secar bergantian memasuki
critical section-nya, jika pada saat itu proses 4 ternyata belum mau
mengerjakan critical section-nya maka proses ke-j tidak akan mendapatkan
kesempatan untuk mengerjakan critical section walau saat itu sebenarnya proses
ke-j akan memasuki critical section. Artinya syarat progress tidak terpenuhi
pada algoritma ini.
2.
Algoritma II
Masalah yang terjadi pada algoritma 1 ialah ketika di entry
section terdapat sebuah proses yang ingin masuk ke critical section, sementara
di critical section sendiri tidak ada proses yang sedang berjalan, tetapi
proses yang ada di entry section tadi tidak bisa masuk ke critical section. Hal
ini terjadi karena giliran untuk memasuki critical section adalah giliran
proses yg lain sementara proses tersebut masih berada di remainder section.
Untuk mengatasi masalah ini maka dapat diatasi dengan merubah variabel trun
pada algoritma pertama dengan array
Boolean flag [2];
Elemen array diinisialisasi false. Jika flag[i] true, nilai
tersebut menandakan bahwa Pi ready untuk memasuki critical section. Pada algoritma
ini. hal pertama yang dilakukan ialah mengeset proses Pi dengan nilai True, ini
menandakan bahwa Pi ready untuk masuk ke critical section. kemudian, Pi
memeriksa apakah Pj
tidak ready untuk memasukui critical section. Jika Pj ready,
maka Pi menunggu sampai Pj keluar dari critical section (flag[j] bernilai
false). Ketika keluar dari critcal section, Pi harus merubah nilai flag[i]
menjadi false agar prores lain dapat memasuki critical section.
Contoh:
Pada algoritma ini, kriteria Mutual-exclusion terpenuhi,
tetapi tidak memenuhi kriteria
progress. Ilustrasinya seperti di bawah ini.
T0 : Po set flag [0] = true
T1 : Po set flag [1] = true
Dari ilustrasi diatas terlihat bahwa algoritma ini
memungkinkan terjadinya nilai true untuk kedua proses, akibatnya tidak ada
proses yang akan berhasil memasuki critical section.
Jadi untuk algoritma 2 masih terdapat kelemahan, seperti
yang terjadi di atas.
3.
Algoritma III
Idenya berasal dari algoritma 1 dan 2. Algoritma 3 mengatasi
kelemahan pada algoritma 1 dan 2 sehingga progres yang diperlukan untuk
mengatasi critical section terpenuhi.
Algoritma III ditemukan oleh G.L. Petterson pada tahun 1981
dan dikenal juga sebagai Algoritma Petterson. Petterson menemukan cara yang
sederhana untuk mengatur proses agar memenuhi mutual exclusion.
Algoritma ini adalah solusi untuk memecahkan masalah critical section
pada dua proses. Ide dari algoritma ini adalah menggabungkan variabel yang di- sharing
pada Algoritma I dan Algoritma II, yaitu variabel turn dan variabel flag.
Sama seperti pada Algoritma I dan II, variabel turn menunjukkan giliran
proses mana yang diperbolehkan memasuki critical section dan variabel flag
menunjukkan apakah suatu proses membutuhkan akses ke critical section
atau tidak.
Awalnya flag untuk kedua proses diinisialisai
bernilai false, yang artinya kedua proses tersebut tidak membutuhkan
akses ke critical section. Kemudian jika suatu proses ingin memasuki critical
section, ia akan mengubah flag-nya menjadi true (memberikan
tanda bahwa ia butuh critical section) lalu proses tersebut memberikan turn
kepada lawannya. Jika lawannya tidak menginginkan critical section (flag-nya
false), maka proses tersebut dapat menggunakan critical section,
dan setelah selesai menggunakan critical section ia akan mengubah flag-nya
menjadi false. Tetapi apabila proses lawannya juga menginginkan critical
section maka proses lawan-lah yang dapat memasuki critical section,
dan proses tersebut harus menunggu sampai proses lawan menyelesaikan critical
section dan mengubah flag-nya menjadi false.
Misalkan ketika P0 membutuhkan critical section, maka
P0 akan mengubah flag[0] = true, lalu P0 mengubah turn= 1.
Jika P1 mempunyai flag[1] = false, (berapapun nilai turn)
maka P0 yang dapat mengakses critical section. Namun apabila P1 juga
membutuhkan critical section, karena flag[1] = true dan turn=
1, maka P1 yang dapat memasuki critical section dan P0 harus menunggu
sampai P1 menyelesaikan critical section dan mengubah flag[1] = false,
setelah itu barulah P0 dapat mengakses critical section.
Bagaimana bila kedua proses membutuhkan critical section
secara bersamaan? Proses mana yang dapat mengakses critical section
terlebih dahulu? Apabila kedua proses (P0 dan P1) datang bersamaan, kedua
proses akan menset masing-masing flag menjadi true (flag[0]
= true dan flag[1] = true), dalam kondisi ini P0 dapat
mengubah turn = 1 dan P1 juga dapat mengubah turn = 0. Proses yang dapat
mengakses critical section terlebih dahulu adalah proses yang terlebih
dahulu mengubah turn menjadi turn lawannya. Misalkan P0 terlebih dahulu
mengubah turn= 1, lalu P1 akan mengubah turn= 0, karena turn
yang terakhir adalah 0 maka P0-lah yang dapat mengakses critical section
terlebih dahulu dan P1 harus menunggu.
Algoritma III memenuhi ketiga syarat yang dibutuhkan. Syarat
progress dan bounded waiting yang tidak dipenuhi pada Algoritma I
dan II dapat dipenuhi oleh algoritma ini karena ketika ada proses yang ingin
mengakses critical section dan tidak ada yang menggunakan critical
section maka dapat dipastikan ada proses yang bisa menggunakan critical
section, dan proses tidak perlu menunggu selamanya untuk dapat masuk ke critical
section.
4.
Algoritma Tukang Roti
Algoritma ini didasarkan pada algoritma penjadwalan yang
biasanya digunakan oleh tukang roti, dimana urutan pelayanan ditentukan dalam
situasi yang sangat sibuk. Algoritma ini dapat digunakan untuk memecahkan
masalah critical section untuk n buah proses, yang diilustrasikan dengan
n buah pelanggan. Ketika memasuki toko, setiap pelanggan menerima
sebuah nomor. Sayangnya, algoritma tukang roti ini tidak
dapat menjamin bahwa dua proses (dua pelanggan) tidak akan menerima nomor yang
sama. Dalam kasus di mana dua proses menerima nomor yang sama, maka proses
dengan nomor ID terkecil yang akan dilayani dahulu. Jadi, jika Pi dan Pj
menerima nomor yang sama dan i < j, maka Pi dilayani dahulu. Karena setiap
nama proses adalah unik dan berurut, maka algoritma ini dapat digunakan untuk
memecahkan masalah critical section untuk n buah proses.
Struktur data umum algoritma ini adalah
boolean choosing[n];
int number [n];
Awalnya, struktur data ini diinisialisasi masing-masing ke
false dan 0, dan menggunakan notasi berikut:
– (a, b) < (c, d) jika a < c atau jika a= c dan b <
d
– max(a0, …, an-1) adalah sebuah bilangan k, sedemikian
sehingga k >= ai untuk
setiap i= 0, …, n – 1
setiap i= 0, …, n – 1
Dengan demikian, diketahui bahwa Algoritma I dan II
terbukti tidak dapat memecahkan masalah critical section untuk dua proses
karena tidak memenuhi syarat progress dan bounded waiting. Algoritma yang dapat
menyelesaikan masalah critical section pada dua proses adalah Algoritma III.
Sedangkan untuk masalah critical section pada n-buah proses dapat diselesaikan
dengan menggunakan Algoritma Tukang Roti.
Komentar
Posting Komentar